Sunday, 9 October 2022

cursor_sharing histogram


9

PROFESSIONAL DBA

Oracle12c Database Administration

Performance Tuning

SQL TUNING

SQL Statement Processing

Processing Phases

The four most important phases in SQL statement processing are

• Parsing

• Binding

• Executing and

• Fetching

Note

The Fetch phase is only to queries.

DataSphere

Parse Phase

• Checks shared pool for the statement.

• Checks the syntax, specifications of the statement.

• Checks the semantics of the statement and ensures that objects required are

valid.

• Check for the privileges to process the statement.

• If required transforms the statement into an equivalent statements, if the

statement is on a view, a subquery, rewriting the statement.

• Builds the Execution plan if required.

• Stores the execution plan or uses an existing execution plan.

Bind Phase

• Checks for references of bind variables in the statement.

• A value to each variable is assigned or reassigned.

Consideration of Binding

The bind variable values are not knows to optimizer while building the execution

plan.

Advantage

Rebind & Execute without reparsing is done faster, thus saves time and memory.

Disadvantage

Cannot estimate predicate selectivity.

DataSphere

Execute Phase

• The parsing tree is used to access the data buffers.

• Same parse tree is used by multiple users.

• Physical reads, logical reads, writes for DML statements is performed.

Fetch Phase

If statement is SELECT then fetch the data.

Typically multiple rows are retrieved using an array fetch.

V$LIBRARYCACHE view

The V$LIBRARYCACHE view the amount of caching of SQL statements.

SQL>select gethitratio, pinhitratio

from v$librarycache

where namespace = ’SQL AREA’;

V$SQLAREA view

The V$SQLAREA view provides the SQL statements and their usage.

SQL>select sql_text, version_count, loads, invalidations, parse_calls, sorts

from v$sqlarea

where parsing_user_id > 0

and command_type = 3

Order by sql_text;

DataSphere

Cursor Sharing

Whenever a statement is issued, optimizer checks the shared SQL area for the

statement.

If the statement is present in the SQL area then parsing is avoided by using the

existing cursor.

Cursor Sharing Benefits

• Avoids parsing and thus saves time.

• Based on the statement executed, the memory is dynamically adjusted.

• Memory usage performance is improve dramatically.

Which statement can share cursor

The SQL statements those having identical elements such as

• Text

▪ Uppercase and lowercase

▪ White space like spaces, tabs, carriage returns

▪ Comments

• Referenced objects

◦ The SQL statements must resolve to the same objects to which they are

referenced.

• Data types of the bind variables

◦ SQL statements must usue the same type of bind variables.

DataSphere

Cursor_Sharing parameter

Cursor_Sharing parameter values are

• Exact

• Simlar

• Force

EXACT

Is the default value.

This value force the parser to use a statement in the cursor only if it is identical is all

aspects to use the existing cursor.

SIMILAR

The parser is allowed to use a statement in the cursor that is identical except literal

values.

After the statement is identified the parsing check that the execution plan is

applicable for the statement.

FORCE

Is same as SIMILAR, except that the execution plan is always used, regardless of its

applicability.

Note

CURSOR_SHARING = SIMILAR or FORCE is not recommended for Complex

Quiries, Decision Support Systems, Data Warehousing environments.

DataSphere

Histograms

The optimizer must estimate the number of rows processed by a given query.

By default optimizer assumes that the data is evenly distributed.

The accuracy is estimated by the optimizer based on its knowledge on the data

distribution.

Histograms provides the proper data distribution information to the optimizer.

When to Use Histograms

• When the data distribution is not even and it is skewed then use histograms.

• If the column is used in WHERE clause.

• If the column is using non unique and using other than equality predicates

Avoid using histograms whenever

• All predicates on the column use bind variables

• The column data is uniformly distributed

Popular and Nonpopular Values

Popular Value

For a bucket endpoint value, the Popular values appear multiple times.

Popular Value

If the values appear only once or does not appear at all, then it is considered as the

NonPopular value.

Density

Is calculated based on 1 divided by NDV - Number of Distinct Values.

This avoids bais of optimizer it causes due to repetition of popular values.

DataSphere

Types of Histograms

Frequency Histogram

In Frequency Histogram, each buckets stores a distinct column value.

As the number of values vary for each distinct value, the buckets will contain

different number of values.

The Frequency Histogram is used when the NDV – Number of Distinct Values is

less than or equal to the n - number of buckets.

Default and maximum number of buckets is 254.

Note

Default Frequency Histogram is captured from Oracle12c if the

AUTO_SAMPLE_SIZE is used while gathering statistics.

Top Frequency Histogram

Is same as Frequency Histogram except that it ignores the Non Popular values those

are insignificant in numbers.

The Top Fequency Histogram is used when

1. NDV - Number of Distinct values are greater than n – number of buckets.

2. The percentage of rows occupied by top n frequent values is equal to greater

than p - the threshold. Where p is (1 - ( 1/n))*100

3. If AUTO_SAMPLE_SIZE is used for Estimate_Percent while gathering

statistics.

DataSphere

Height Balanced Histogram

Is a legacy method of histogram.

In height balanced histograms, each bucket will more or less contains same number

of rows.

The rows are distributed across the available number of buckets.

If many rows contains the same value then it may be spread to multiple buckets to

balance the height of the bucket.

The Height Balance Histogram is used when

• NDV - Number of Distinct values are greater than n – number of buckets.

• If AUTO_SAMPLE_SIZE is NOT used for Estimate_Percent while gathering

statistics.

Gathering Histogram

Using Analyze

• Generate statistics for the CUSTOMERS table and for the STATE_ID column

by specifying maximum 50 buckets.

SQL>analyze table customers compute statistics

for table for columns STATE_ID

size 50 ;

• Compute the statistics in Column Level for a column without specifying the

number of buckets.

SQL> analyze table customers compute statistics

for columns STATE_ID ;

DataSphere

Using DBMS_STATS

• Generate statistics for the CUSTOMERS table and for the STATE_ID column

by specifying maximum 50 buckets.

SQL> EXECUTE DBMS_STATS.GATHER_TABLE_STATS

('RAM','CUSTOMERS', METHOD_OPT =>

'FOR COLUMNS SIZE 50 STATE_ID') ;

• The SIZE specifies the maximum number of buckets for the histogram.

or

SQL> EXECUTE DBMS_STATS.GATHER_TABLE_STATS

(ownname => 'RAM',

tabname => 'CUSTOMERS',

METHOD_OPT => 'FOR COLUMNS STATE_ID SIZE 50') ;

or

SQL> EXECUTE DBMS_STATS.GATHER_TABLE_STATS

(ownname => 'RAM',

tabname => 'CUSTOMERS',

METHOD_OPT => 'FOR COLUMNS STATE_ID SIZE 10',

estimate_percent => AUTO_SAMPLE_SIZE ) ;

DataSphere

Histogram Consideration

• Use the FOR ALL INDEXED COLUMNS option.

• If data distribution is not static then gather histograms frequently.

• Do not gather histograms for columns using bind variables in WHERE clauses.

• Unless improvement in performance avoid using histograms.

• Histograms are stored in data dictionary and needs substantial additional

storage.

VIEWS

SQL> Select table_name, column_name, num_distinct, histogram

From User_Tab_Col_Statistics

Where table_name = 'CUSTOMERS'

and column_name = 'STATE_ID';

SQL> Select endpoint_number, endpoint_value

From user_histograms

Where table_name = 'CUSTOMERS'

and column_name = 'STATE_ID';

DataSphere


Eg.

exec dbms_stats.gather_dictionary_stats;

 

exec dbms_stats.gather_fixed_objects_stats;


exec dbms_stats.gather_database_stats(cascade => TRUE, method_opt => 'FOR ALL COLUMNS SIZE SKEWONLY', degree => 18 );


Tablespace - Datafile

 

Tablespace - Datafile  details query

set lines 200

col FILE_NAME for a60

select FILE_NAME,TABLESPACE_NAME,bytes/1024/1024/1024 from DBA_DATA_FILES where TABLESPACE_NAME='<Tablespace_name>';



col FILE_NAME for a60


select FILE_NAME,TABLESPACE_NAME,BYTES/1024/1024/1024 "IN GB" from dba_temp_files where TABLESPACE_NAME='<Tablespace_name>';

ROLES Query Examples

ROLES  Query Examples 

set lines 200 pages 1000 ver off

col grantee for a30

col role for a16

col type for a10

col pv for a80 hea 'PRIVILEGE OR ROLE'

bre on role on type skip 1

define usercheck ='<user_name>'

select grantee, 'ROL' type, granted_role pv

from dba_role_privs where grantee = '&usercheck' union

select grantee, 'PRV' type, privilege pv

from dba_sys_privs where grantee = '&usercheck' union

select grantee, 'OBJ' type,

max(decode(privilege,'WRITE','WRITE,'))||max(decode(privilege,'READ','READ'))||

max(decode(privilege,'EXECUTE','EXECUTE'))||max(decode(privilege,'SELECT','SELECT'))||

max(decode(privilege,'DELETE',',DELETE'))||max(decode(privilege,'UPDATE',',UPDATE'))||

max(decode(privilege,'INSERT',',INSERT'))||' ON '||object_type||'  "'||a.owner||'.'||table_name||'"' pv

from dba_tab_privs a, dba_objects b

where a.owner=b.owner and a.table_name = b.object_name and a.grantee='&usercheck'

group by a.owner,table_name,object_type,grantee union

select username grantee, '---' type, 'empty user ---' pv from dba_users

where not username in (select distinct grantee from dba_role_privs) and

not username in (select distinct grantee from dba_sys_privs) and

not username in (select distinct grantee from dba_tab_privs) and username like  '%&usercheck%'

group by username

order by grantee, type, pv;

SELECT DBMS_METADATA.GET_GRANTED_DDL('ROLE_GRANT','SPDPAMF') from dual;

set heading off;
set echo off;
set pagesize 0;      
set long 99999;      
set linesize 32767;  
set trimspool on;   
SELECT DBMS_METADATA.GET_GRANTED_DDL('ROLE_GRANT','SUDAWA2') from dual;

SELECT DBMS_METADATA.GET_GRANTED_DDL('OBJECT_GRANT','SPDPAME') from dual;


col GRANTEE for a40
col OWNER for a30
col TABLE_NAME for a30
col GRANTOR for a30
col PRIVILEGE for a30
set lines 200
SELECT * FROM DBA_TAB_PRIVS  WHERE GRANTEE IN (SELECT granted_role FROM DBA_ROLE_PRIVS WHERE GRANTEE = 'E593469');

SQL> SET lines 100
COL privilege FOR a50
SELECT grantee, granted_role, default_role
FROM dba_role_privs
WHERE granted_role IN ('DBA', 'EXP_FULL_DATABASE', 'IMP_FULL_DATABASE')
ORDER BY 1,2; 

GRANTEE                                  GRANTED_ROLE                                                                                                                     DEF
---------------------------------------- -------------------------------------------------------------------------------------------------------------------------------- ---
DATAPUMP_EXP_FULL_DATABASE               EXP_FULL_DATABASE                                                                                                                YES
DATAPUMP_IMP_FULL_DATABASE               EXP_FULL_DATABASE                                                                                                                YES
DATAPUMP_IMP_FULL_DATABASE               IMP_FULL_DATABASE                                                                                                                YES
DBA                                      EXP_FULL_DATABASE                                                                                                                YES
DBA                                      IMP_FULL_DATABASE                                                                                                                YES
DBA_ROLE                                 DBA                                                                                                                              YES
DBMAINT                                  DBA                                                                                                                              YES
EDP_SUPPORT_UPDATE_ROLE                  EXP_FULL_DATABASE                                                                                                                YES
EDP_SUPPORT_UPDATE_ROLE                  IMP_FULL_DATABASE                                                                                                                YES
IOC_ROLE                                 EXP_FULL_DATABASE                                                                                                                YES
IOC_ROLE                                 IMP_FULL_DATABASE                                                                                                                YES

GRANTEE                                  GRANTED_ROLE                                                                                                                     DEF
---------------------------------------- -------------------------------------------------------------------------------------------------------------------------------- ---
SYS                                      DBA                                                                                                                              YES
SYS                                      EXP_FULL_DATABASE                                                                                                                YES
SYS                                      IMP_FULL_DATABASE                                                                                                                YES
SYSTEM                                   DBA          

SELECT DBMS_METADATA.GET_GRANTED_DDL('SYSTEM_GRANT','LINCPAM_DMM_UPDATE_ROLE') from dual;

SELECT dbms_metadata.get_ddl('USER','SCOTT') FROM dual;

SELECT DBMS_METADATA.GET_GRANTED_DDL(
  2  'SYSTEM_GRANT','RESOURCE') from dual;
  
  select granted_role,admin_option,default_role from dba_role_privs where grantee='20';
  
  select * from dba_role_privs where grantee='20';
  
  select * from dba_sys_privs where grantee='20';
  
  select * from USER_ROLE_PRIVS where USERNAME=82';
select * from USER_TAB_PRIVS where Grantee = 82';
select * from USER_SYS_PRIVS where USERNAME = 'E
2';

Generate on source. 
select 'create role '||role||';' from dba_roles;
2. Than generate a ddl from the dump for grants only
include=grant
sqlfile=grant.sql